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Abstract
In 1959, March and Young (Nucl. Phys. 12 237) rewrote the equation of motion
for the Dirac density matrix γ (x, x0) in terms of sum and difference variables.
Here, γ (�r, �r0) for the d-dimensional isotropic harmonic oscillator for an
arbitrary number of closed shells is shown to satisfy, using the variables
|�r + �r0|/2 and |�r − �r0|/2, a generalized partial differential equation embracing
the March–Young equation for d = 1. As applications, we take in turn the
cases d = 1, 2, 3 and 4, and obtain both the density matrix γ (�r, �r0) and the
diagonal density �(r) = γ (�r, �r0)|�r0=�r , this diagonal element already being
known to satisfy a third-order linear homogeneous differential equation for
d = 1 through 3. Some comments are finally made on the d-dimensional kinetic
energy density, which is important for first-principles density functional theory
in allowing one to bypass one-particle Schrödinger equations (the so-called
Slater–Kohn–Sham equations).

PACS numbers: 05.30.Fk, 71.10.Ca, 31.15.Ew, 03.75.Fi

1. Introduction

Considerable impetus has been given to the theoretical study of many-fermion systems which
are harmonically confined, and essentially non-interacting, by the experimental study of
DeMarco and Jin [1]. These researchers achieved the evaporative cooling of dilute, and
hence almost non-interacting, fermions, following the earlier experimental studies of the
Bose–Einstein condensation in ultracold trapped Bose gases. The further experimental studies
in [2–5] add to the motivation for further theoretical study. In the above experiments, the focus
was on ultracold vapours of the 40K and 6Li fermionic isotopes populating hyperfine states
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inside magnetic traps. s-wave collisions between fermions in the same hyperfine state are
inhibited by the Pauli principle. p-wave scattering and dipole–dipole magnetic interactions
are very weak at extremely low temperatures [6, 7]. Thus, a one-component vapour of
Fermi atoms in a fully spin-polarized state inside a magnetic trap is a close experimental
representation of an ideal non-interacting many-body assembly of fermions.

In current experimental techniques based on axially symmetric magnetic traps, it proves
possible to range from a quasi-one-dimensional (1D) trap to a quasi-2D trap [8], and to a fully
spherical 3D trap. These possibilities motivated the computer study of Vignolo, Minguzzi and
Tosi involving the Green’s operator [9, 10] and the analytical work of March and Nieto [11]
in 1D, and the generalization to obtain differential equations for the fermion density �(r) in
2D [12] and 3D [13, 14] isotropic harmonic confinement, for an arbitrary number of closed
shells. Throughout all these studies, it is appropriate to focus on singly filled levels, due to
the experimental setups dealing with spin-polarized fermions.

The above combination of experimental and theoretical studies made it natural to take
the basic development of independent fermion theory of many-particle assemblies further.
Then it is worth emphasizing that Dirac [15] already in 1930 introduced his density matrix
(DM), called the 1DM γ (�r, �r0) below, which gave a complete description of an assembly of
non-interacting fermions described by a single Slater determinant. The quite recent study of
Holas and March [16], in which the force −∂Vxc/∂�r in a truly many-body situation, Vxc(�r)
being the exchange-correlation potential central to current use of the density functional theory,
is related exactly to the 1DM and second-order density matrix, makes further investigation of
the Dirac 1DM in relation to the fermion density �(�r) an important area for further theoretical
work. This provides additional motivation for the present study.

The outline of this paper is as follows. In section 2, the partial differential equation satisfied
by the Dirac density matrix γ (�r, �r0) is derived for the d-dimensional harmonic oscillator in
terms of sum and difference variables |�r + �r0| and |�r − �r0|. Then, in sections 3 and 4 we take
in turn the explicit cases d = 1 and 2 respectively, and in particular in section 4 a form of the
1DM γ is given in which summation over shells is avoided by means of multiple integration.
The diagonal element γ (�r, �r0)|�r0=�r = �(r) is shown by example to be readily amenable to
numerical computation. Section 5 summarizes, more briefly, some progress on d = 3 and 4
cases. Section 6 is concerned with the d-dimensional kinetic energy density within the present
framework. Finally section 7 constitutes a summary, plus some suggestions for future study.

2. Partial differential equation for the Dirac density matrix γ(�r, �r0) for the
d-dimensional harmonic oscillator for an arbitrary number of closed shells

March and Young [17] in an earlier work considered the equation of motion for the Dirac
density matrix γ (x, x0) for fermions moving independently along the x axis in a common
potential energy V (x). The so-called equation of motion Hγ − γH = 0, with H as the
one-body Hamiltonian, then reads in coordinate representation

∂2γ (x, x0)

∂x2
− ∂2γ (x, x0)

∂x2
0

= 2m

h̄2 [V (x)− V (x0)]γ (x, x0). (2.1)

Following [17], one next introduces sum and difference variables ξ and η, defined by

ξ = x + x0

2
η = x − x0

2
. (2.2)

Then, March and Young rewrote equation (2.1) in the form

∂2γ (ξ, η)

∂ξ∂η
= 2m

h̄2 [V (ξ + η)− V (ξ − η)]γ (ξ, η). (2.3)
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Throughout this paper, we shall be concerned with the harmonic potential energy

V (x) = 1
2mω

2x2 (2.4)

generalized below, however, to d dimensions.
Then, equation (2.3) takes the explicit form

∂2γ (ξ, η)

∂ξ∂η
= 2m

h̄2

1

2
mω2[(ξ + η)2 − (ξ − η)2]γ (ξ, η) = 4m2ω2

h̄2 ξηγ (ξ, η). (2.5)

If we now make the change of function (compare, e.g., equation (3.4) below)

γ (ξ, η) = e−mω
h̄
(ξ 2+η2)f (ξ, η) (2.6)

and introduce new independent variables

p = ξ2 q = η2 (2.7)

we get a simple partial differential equation with constant coefficients:

∂2f (p, q)

∂p∂q
= ∂f (p, q)

∂p
+
∂f (p, q)

∂q
. (2.8)

We shall return to an application of equation (2.8) in section 3.
But now we turn to the d-dimensional equation for the Dirac density matrix γ . Our first

objective below is to generalize the result (2.5) to d dimensions for an isotropic harmonic
oscillator with potential energy

V (r) = 1
2mω

2r2. (2.9)

The canonical or Bloch density matrix C(�r, �r0, β) for this problem with d = 3 was solved
analytically in the study of Sondheimer and Wilson [18] and is known to depend only on the
two scalar variables |�r + �r0| and |�r − �r0|. Let us introduce precisely the new d-dimensional
coordinates

�ξ = �r + �r0
2

�η = �r − �r0
2

. (2.10)

The equation to be considered now is the equivalent of (2.1) in d dimensions for the potential
energy (2.9):

∇2
�r γ (�r, �r0)− ∇2

�r0γ (�r, �r0) = m2ω2

h̄2

(
r2 − r2

0

)
γ (�r, �r0) (2.11)

which is readily transformed into

(∇�ξ · ∇�η)γ (�ξ, �η) = 4m2ω2

h̄2 (�ξ · �η)γ (�ξ, �η). (2.12)

As we already know that the Dirac density matrix γ depends only on the moduli ξ = |�ξ | and
η = |�η|, equation (2.12) can be easily seen to reduce to

(�ξ · �η)
ξη

∂2γ (ξ, η)

∂ξ∂η
= 4m2ω2

h̄2 (�ξ · �η)γ (ξ, η) (2.13)

which is precisely the same equation (2.5) that we displayed in the one-dimensional case.
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3. Explicit form of density matrix γ(ξ, η) for d = 1 and for N singly occupied levels

In deriving a differential equation for the fermion density �(x) for fermions occupying singly
N-levels of the potential energy (2.4), Lawes and March [19] appealed to the result of Husimi
[20] for the Dirac density matrix γ (x, x0), namely

γ (x, x0) = 1

2
ψN(x)ψN(x0) +

1

2(x − x0)
[ψN(x)ψ ′

N(x0)− ψN(x0)ψ
′
N(x)] (3.1)

whereψN(x) is the normalized wavefunction for theN th state, the lowest level corresponding
to N = 1.

The completeness theorem for eigenfunctions ψi(x), namely

γ (x, x0) =
∑
all i

ψ∗
i (x)ψi(x0) = δ(x − x0) (3.2)

evidently tells us that in the limit N → ∞ the exact result (3.1), which is valid for all N, must
become independent of the variable ξ in equation (2.2).

The other simple case is, of course, N = 1, for which

γ (x, x0) = ψ1(x)ψ1(x0) = 1√
π

exp

(
−x

2 + x2
0

2

)
(3.3)

or

γ (ξ, η) = 1√
π

exp(−(ξ2 + η2)). (3.4)

Here units are used in whichm = h̄ = ω = 1, and then it is an elementary matter to show that
γ (ξ, η) in equation (3.4) satisfies the partial differential equation (2.5).

For general N, we have in terms of the Hermite polynomials that

ψN(x) = NN−1 exp(−x2/2)HN−1(x) (3.5)

and

ψ ′
N(x) = NN−1 exp(−x2/2)[−xHN−1(x) + 2(N − 1)HN−2(x)] (3.6)

where the normalization constant is given by

NN−1 = 1

π1/4

√
1

2N−1(N − 1)!
. (3.7)

Then

γ (ξ, η) = N 2
N−1e−(ξ 2+η2)

[
HN−1(ξ + η)HN−1(ξ − η) +

N − 1

2η
{HN−1(ξ + η)HN−2(ξ − η)

−HN−2(ξ + η)HN−1(ξ − η)}
]
. (3.8)

For two levels occupied, equation (3.8) reduces to

γ (ξ, η) = e−(ξ 2+η2)

√
π

[1 + 2(ξ2 − η2)] (3.9)

and for three and four levels only occupied the Dirac density matrices are, respectively,

γ (ξ, η) = e−(ξ 2+η2)

2
√
π

[3 − 8η2 + 4ξ4 + 4η4 − 8ξ2η2] (3.10)
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and

γ (ξ, η) = e−(ξ 2+η2)

6
√
π

[9 + 18ξ2 − 42η2 − 12ξ4 + 36η4 − 24η2ξ2

+ 8(ξ6 − η6) + 24ξ2η4 − 24ξ4η2]. (3.11)

It is straightforward, by substitution in the partial differential equations (2.5) or (2.8), to verify
that these results (3.9)–(3.11) are exact solutions.

It is of some interest, in concluding this section for d = 1, to note from equations
(3.9)–(3.11) that in terms of f (p, q) entering equations (2.6) and (2.8), with p and q related to
ξ and η through equation (2.7), the highest powers of p and q and their corresponding cross-
terms, have the form of a constant times (p − q)N−1, where N = 2, 3 and 4 for equations
(3.9), (3.10) and (3.11), respectively. The coefficient of this highest-order contribution
is known if the fermion density �(r) has been obtained, since the function f (p, q = 0)
determines this quantity � through equation (2.6).

4. Two-dimensional harmonic confinement: Dirac density matrix together with some
numerical results for the diagonal fermion particle density

In this section we turn to the case of two-dimensional harmonic confinement. We shall begin
by stating a result, in the form of a multidimensional integral, for the Dirac density matrix.
Some background to this is summarized in appendix A. It will then be shown that the diagonal
element of this result, the Fermi particle density �(r), can be readily computed for a selected
number of closed shells. This result then prompts an alternative solution for �(r) from the
third-order linear homogeneous differential equation established by Minguzzi et al [12]. The
numerical results from the multiple integral form (4.1) immediately below, with �r0 = �r , are
thereby confirmed to be correct.

As stated above, we will now simply give, as a starting point for this section, the
multidimensional integral form of γ (�r, �r0) for the two-dimensional isotropic harmonic
oscillator with M + 1 as the number of closed shells, and with h̄,m taken as unity:

γ (x, y, x0, y0) = ω e−ω (r2+r2
0)

/
2

π3M!

∫
R

4
e−(t21 +t22 +t23 +t24 ) ez�(M + 1, z) dt1 dt2 dt3 dt4 (4.1)

where �(M + 1, z) is the incomplete gamma function and

z = 2[(
√
ωx + it1)(

√
ωx0 + it2) + (

√
ωy + it3)(

√
ωy0 + it4)]. (4.2)

Since �(M + 1, z) = M! e−z ∑M
n=0 z

n/n!, equation (4.1) is just

γ (x, y, x0, y0) = ω e−ω (r2+r2
0)

/
2

π3

M∑
n=0

∫
R

4
e−(t21 +t22 +t23 +t24)

zn

n!
dt1 dt2 dt3 dt4. (4.3)

The integrals can be readily evaluated.
We now turn to an approach which will allow a numerical check of the diagonal form

of equation (4.3). The total density for the closed-shell isotropic two-dimensional oscillator
has been discussed by Brack and van Zyl [21], and can be written in terms of the Laguerre
polynomials as [12] (assuming single occupancy of levels)

�(r) = ω

M∑
µ=0

(M + 1 − µ)(−1)µLµ(2ωr2) e−ωr2
(4.4)
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Figure 1. Fermi particle density for two-dimensional harmonic oscillator with ten closed shells.
Agreement between the two cases shown, to the numerical accuracy employed, confirms the
equivalence of the diagonal element of equation (4.1) for the Dirac density matrix and the well-
established form (4.6) for the fermion density for this example.

with (M + 1) the number of filled shells. Starting from this expression, Minguzzi, March and
Tosi derive the (third-order, linear) differential equation obeyed by the density [12]:

1

8

∂[∇2�(r)]

∂r
+

[(
M +

3

2

)
ω − ω2r2

2

]
∂�(r)

∂r
+ ω2r�(r) = 0. (4.5)

4.1. An alternative ‘recursion’ form of the total density �(r) for M + 1 closed shells

Direct solution of equation (4.5) as a Gaussian times a finite polynomial in (ωr2) allows one
to write �(r) in a simpler form as

�(r) = C2 exp(−ωr2)

M∑
n=0

a(n)(ωr2)n (4.6)

where

C2 = Nω/π∑M
n=0 a(n)n!

(4.7)

N is the total particle number and the a(n) are related by the recursion relation

n(n + 1)2a(n + 1) + n(2(M + 1)− 3n)a(n) + 2(n− (M + 1))a(n− 1) = 0 (4.8)

with a(M) = 2M. Note that, in two dimensions, the total particle number is N =
(M + 2)(M + 1)/2. This form of the solution is analogous to those previously derived for
total particle density for the one- and three-dimensional isotropic oscillator [14, 22]. It is
worth reiterating here that the 1D analogue of equation (4.6) reproduces the diagonal (η = 0)
forms in equations (3.4) and (3.9)–(3.11).

Turning briefly to some numerical results for d = 2, we have used both the diagonal form
of equation (4.1) and the alternative form of �(r) given in equation (4.6) for ten closed shells.
A plot is shown in figure 1: the results being in accord with the numerical accuracy to which
we have worked. This confirms the correctness of the integral form (4.1) on the diagonal.
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4.2. The kinetic energy density t (r)

As in the one- and three-dimensional cases, the form (4.6) for the total density means that we
can evaluate analytically the kinetic energy density t (r). It is more convenient to express this
in terms of the average t̄ (r) ≡ [t (r) + tG(r)]/2 of the ψ∇2ψ and (∇ψ)2 wavefunction forms,
respectively, of the kinetic energy density. We then make use of the two-dimensional form of
the ‘differential virial theorem’ [12],

∂t̄

∂r
= −�(r)∂V (r)

∂r
(4.9)

where ∂V (r)/∂r = ω2r, and the density of equation (4.6) to find

t̄ (r) = −ωC2

2
exp(−ωr2/2)

M∑
n=0

a(n)

(n + 1)
(ωr2)n/2MW

(
n

2
,
n + 1

2
, ωr2

)
+ λ2 (4.10)

with MW(b, c, z) being the Whittaker function [23] and

λ2 = ω2N

2π
(4.11)

for t̄ (r) → 0 as r → ∞. Again, this form is analogous to those found in the one-dimensional
[22] and three-dimensional [14] cases.

4.3. Total density and kinetic energy density in momentum (p) space for the isotropic 2D
oscillator

It is well known that the 1D harmonic oscillator wavefunctions have the same functional form
in r-space as in p-space. The same is true in 2D, since we can always write the wavefunction
in r-space as ψn,m(x, y) = φn(x)φm(y). The implication therefore is that the particle density
n(p) in p-space for the isotropic 2D oscillator also has the same functional form as �(r) in
r-space. Thus, we can write at once

n(p) = C̃2 exp(−p2/ω)

M∑
n=0

a(n)(p2/ω)n (4.12)

with

C̃2 = N/(πω)∑M
n=0 a(n)n!

(4.13)

and the same recursion relations as in equation (4.8) for the a(n). It follows that the density
in p-space is also a solution of a differential equation of the same form as that for r-space, i.e.

1

8

∂
[∇2

pn(p)
]

∂p
+

[(
M +

3

2

)
ω − p2

2ω2

]
∂n(p)

∂p
+
pn(p)

ω2
= 0. (4.14)

Note that the kinetic energy density in p-space, t (p) = p2n(p)/2, is consequently also
determined.

4.4. Fourier transform of n(p) and t (p) related to total kinetic energy

The relation

t ′(r) =
(
(M + 3/2)ω − ω2r2

2

)
�′(r) (4.15)
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derived in [12], can be used to evaluate the total kinetic energy of the 2D system; multiplying
both sides by r and integrating by parts over all space, we find for N particles

T/N = (M + 3/2)ω/3 (4.16)

where use has been made of the equality of potential and kinetic energies and the integral form
of the virial theorem.

In [24] the Fourier transforms of the p-space particle density n(p) and of the kinetic
energy density t (p) into r-space are shown to give information on the density matrix and on
the total kinetic energy of a system. Specifically, the Fourier transform ñ(�r) of n(p) is such
that

ñ(�r) =
∫
γ (�r ′ − �r, �r ′) d�r ′ (4.17)

where γ (�r, �r ′) is the first-order density matrix, while the transform t̃ (�r) of t (p) is such that
t̃ (0) = T , the total kinetic energy of the system. In the present case of the 2D oscillator, ñ(�r)
can be evaluated explicitly as

ñ(r) = C̃2ωπ

2

M∑
n=0

a(n)n!M(n + 1, 1,−ωr2/4) (4.18)

where M(a, b, z) is Kummer’s M-function [23]. This form for ñ(r) is analogous to that
constructed for the three-dimensional case in [24]. We note that at r = 0, ñ(0) = N as it must
be. Likewise t̃ (�r) can be evaluated as

t̃ (r) = C̃2ω
2π

2

M∑
n=0

a(n)(n + 1)!M(n + 2, 1,−ωr2/4). (4.19)

As r → 0, it can be verified that

t̃ (0) = C̃2ω
2π

2

M∑
n=0

a(n)(n + 1)! (4.20)

gives back the kinetic energy T of equation (4.16).

5. Cases d = 3 and 4

Let us, very briefly, summarize some rather simple results for the final examples to be tackled
here, namely d = 3 and 4. For the case of two closed shells and d = 3, Minguzzi et al [13]
give γ (�r, �r0) solely in terms of r2 + r2

0 and �r · �r0. But we have the elementary identities

r2 + r2
0 = 1

2

[|�r + �r0|2 + |�r − �r0|2
]

(5.1)

and

�r · �r0 = 1
4

[|�r + �r0|2 − |�r − �r0|2
]
. (5.2)

Then, a straightforward calculation gives the Dirac matrix γ for the lowest two filled shells as

γ (|�r + �r0|, |�r − �r0|) =
(ω
π

)3/2
exp

(
−ω|�r + �r0|2

4

)
exp

(
−ω|�r − �r0|2

4

)
× [

1 + 2ω
(|�r + �r0|2 − |�r − �r0|2

)]
. (5.3)

It is a straightforward matter, by explicit substitution of form (5.3) in the partial differential
equation (2.11) written specifically for three dimensions, to show that it satisfies this equation.
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Of course, idempotency of γ is a further necessary requirement and that is ensured by the
construction of the starting γ in [13] from orthonormal single-particle wavefunctions.

For the case d = 4, we shall consider two closed shells (M = 1). The lowest shell is
singly degenerate, while the second is four-fold degenerate; the density matrix has the form

γ (�r, �r0) = N exp

(
−ω|�r + �r0|2

4

)
exp

(
−ω|�r − �r0|2

4

)
[1 + bω(�r · �r0)] (5.4)

where �r and �r0 are now four-component vectors and N , b are constants. Applying equation
(2.10) gives

γ (�ξ, �η) = N exp
(−ω(ξ2 + η2)

) [
1 + bω(ξ2 − η2)

]
. (5.5)

The constants N and b can be determined if γ (�r, �r0) is known on the diagonal, i.e. if the
density �(r) is known.

In d dimensions the density �(r) is determined by

1

8

∂[∇2�(r)]

∂r
+

[(
M +

d + 1

2

)
ω − ω2r2

2

]
∂�(r)

∂r
+ dω2r�(r)/2 = 0 (5.6)

where

∇2� = ∂2�

∂r2
+
d − 1

r

∂�

∂r
. (5.7)

Evidently, equations (5.6) and (5.7) contain equation (4.5) for the special case when d = 2.
For general d, the solution to (5.6) can be written in the ‘recursion’ form as

�(r) = Cd exp(−ωr2)

M∑
n=0

a(n)(ωr2)n (5.8)

for (M + 1) closed shells, with

Cd = 2N�(1 + d/2)ωd/2

dπd/2
∑M

n=0 a(n)�(n + d/2)
(5.9)

the number of particles N given by N = �d
i=1(M + i)/d!, and the a(n) determined by the

relation

n(n + 1)(n + d/2)a(n + 1) + 2n[(M + 1)− 3n/2]a(n) + 2[n− (M + 1)]a(n− 1) = 0.

(5.10)

For M = 1 and d = 4, we then find a(0) = 1, a(1) = b = 2 and N = C4 = ω2/π2,

so that γ (�r, �r0) is completely determined. In figure 2 we plot, for comparison with the
two-dimensional case in figure 1, the density for the case of ten closed shells in four
dimensions.

A referee has asked us to comment on why the d = 4 oscillator is relevant to ‘reality’.
This is explained in the study of [25] on the Wigner function for a system of degenerate
fermions moving in an oscillator potential. These authors emphasize the interest in retaining
dimensionality since various properties corresponding to, say, d = 4, may be related to those
of similar systems (for example, a Coulombic potential) in one dimension higher or lower.
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Figure 2. Fermi particle density for four-dimensional harmonic oscillator with ten closed shells.

6. Kinetic energy density in d dimensions

While the kinetic energy density has been discussed earlier, with the most emphasis given to
the case of d = 2, we want to summarize some results with general d-dimensional application
for the harmonic oscillator in this penultimate section. Here, we focus entirely on the positive
definite form of the kinetic energy density, tG(�r) say, corresponding to the (∇ψ)2 form in
terms of wavefunctions. This can immediately be translated, in terms of the Dirac density
matrix γ (�r1, �r2), to

tG(�r) = h̄2

2m

(∇�r · ∇�r0
)
γ (�r, �r0)

∣∣
�r0=�r . (6.1)

Again, as emphasized throughout the paper, we exploit the fact that γ in equation(6.1) depends
only on the two scalar variables |�ξ | and |�η|,where the two vectors �ξ and �η are defined explicitly
in equation (2.10).

By straightforward use of the chain rule, employing these new variables, one has the
following identity for this specific case when γ = γ (|�ξ |, |�η|):(∇�r · ∇�r0

)
γ (�r, �r0)|�r0=�r = 1

4

(
∇2

�ξ − ∇2
�η
)
γ

∣∣∣
�η→0

. (6.2)

In d dimensions, we have the further result

∇2
�ξ γ = ∂2γ

∂ξ2
+
d − 1

r

∂γ

∂ξ
(6.3)

with a corresponding formula for ∇2
�ηγ .

As a very specific example, let us utilize the 3D example in equation (5.3), applicable to
the lowest two filled shells. Then, choosing ω = 1 for notational simplicity, we obtain

tG(�r) = 1

8π3/2
exp(−ξ2)[24 − 12ξ2 + 8ξ4] (6.4)

which, on integration to find T = ∫ ∞
0 t (r)4πr2 dr, givesE/2 where E is the total energy (sum

of eigenvalues) for two closed shells.
In general, in d dimensions, the basic results of this section are embodied in

equations (6.1)–(6.3), and, of course, to find the d-dimensional total kinetic energy the correct
‘volume’ element in d dimensions must be employed, to replace 4πr2 dr used above for the
3D example.
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7. Summary and possible future directions

The main achievements of the present theoretical study are:

(i) The partial differential equation (2.13) in terms of sum and difference of variables |�r + �r0|
and |�r − �r0|. This equation holds in d dimensions and is readily shown to embrace
equation (2.5) derived in the early investigation of March and Young [17]. With the
change of dependent variable made in equation (2.6), one is led to equation (2.8), which is
a simple partial differential equation also valid for the d-dimensional harmonic oscillator.

(ii) The explicit multiple-integral form (4.1) for the 2D isotropic harmonic oscillator. This
diagonal form �(x, y) = �(r) has been shown numerically (for ten closed shells) to be
identical to that derived directly from the ‘recursion’ form (4.6), which in turn solves the
(ordinary) differential equation (4.5).

(iii) The demonstration for the 2D fermion density �(r) that the properties of the highest
occupied shell alone determine �(r) completely (compare, in 1D, equation (3.8) with
difference variable η set equal to zero).

(iv) Directly from the Dirac matrix, the positive definite kinetic energy density tG(r) is derived
in section 6.

As to future directions, precise mathematics by which one could pass from exact results
such as the 2D γ (�r, �r0) in equation (4.1) to the asymptotic form as one approaches the limit
N → ∞ would be of interest. Such a limiting form of γ must evidently have the Thomas–
Fermi 2D density �(r) as its limiting diagonal result.
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Appendix A. Multidimensional integral for the Dirac density matrix in two dimensions

In Cartesian coordinates, the normalized wavefunction ψn,m(x, y) for the state of the 2D
oscillator specified by state numbers n, m is (h̄ = m = 1)

ψn,m(x, y) =
√
ω e−ω(x2+y2)/2

(2n+mπn!m!)1/2
Hn(

√
ωx)Hm(

√
ωy) (A.1)

with Hj the Hermite polynomials. If we now use the integral representation of the Hermite
polynomials [26],

Hj(x) = 2j√
π

∫ ∞

−∞
(x + it)j exp(−t2) dt (A.2)

we can write

ψn,m(x, y) =
√
ω2(n+m)/2 exp(−ω(x2 + y2)/2)

π3/2
√
n!m!

∫
R

2
(
√
ωy + it3)

m(
√
ωx + it1)

n e−t21 −t23 dt1 dt3.

(A.3)
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Then the 1DM becomes

γ (x, y, x0, y0) =
∑
n,m

ψ∗
n,m(x, y)ψn,m(x0, y0)

= ω e−ω (r2+r2
0)

/
2

π3

∫
R

4
e−t21 −t22 −t23 −t24 dt1 dt2 dt3 dt4

∑
n,m

2n+m

n!m!

× [(
√
ωx + it1)(

√
ωx0 + it2)]

n[(
√
ωy + it3)(

√
ωy0 + it4)]

m. (A.4)

For the isotropic oscillator with (M + 1) closed shells, the sum over n, m becomes a sum over
n, with m = N − n, as n goes from 0 to N, and a subsequent sum over N from 0 to M. With
these restrictions, the summations in equation (A.4) result in equation (4.1). This form of γ
can be straightforwardly generalized to arbitrary dimensionality.

Appendix B. Total 2D density in terms of one-dimensional densities, and of
wavefunctions for highest occupied level

For the case of non-interacting particles, since the two-dimensional eigenfunctionsψnm(x, y)
can be constructed as products of the known one-dimensional (1D) eigenfunctions φn(x) and
φm(y), the total density in 2D is given by an expression of the form

�2D(x, y) =
∑
n,m

ψ2
nm(x, y) =

∑
n,m

φ2
n(x)φ

2
m(y) (B.1)

where indices n, m sum over all allowed states. Since we can always write φ2
n = �1D

n − �1D
n−1,

where �1D
n is the total density associated with a 1D oscillator having (n + 1) filled shells, we

can rewrite the isotropic 2D density in terms of 1D densities as

�2D
M (x, y) =

M∑
N=0

N∑
n=0

[
�1D
n (x)− �1D

n−1(x)
] [
�1D
N−n(y)− �1D

N−n−1(y)
]

(B.2)

where we take �1D
i−j = 0 for j > i.

It is possible to confirm, starting from the above relation (as an extension of the case for the
1D harmonic oscillator [19]), that in the isotropic 2D case the total density �2D

M (x, y) = �2D
M (r)

for the system with (M + 1) filled shells is completely characterized by the properties of the
wavefunctions for the highest occupied shell alone. As noted by Lawes and March [19], for
the 1D oscillator the work of Husimi [20] shows that the density �1D

n (x) for a system with n
filled states can be related to the wavefunction φn(x) for the nth state alone through[

�1D
n (x)

]′ = −xφ2
n(x) +

1

2

d

dx
φ2
n(x) (B.3)

(we take units in this section such that ω = 1). If we define a quantity analogous to φ2
n,

�2
M(x, y) = ∑M

n=0 φ
2
n(x)φ

2
M−n(y) = �2D

M (x, y)− �2D
M−1(x, y), for the (M + 1)st shell of the

2D oscillator, where �2D
M (x, y) is the total density of the oscillator with (M + 1) filled shells,

then using equation (B.2) we can also write

�2
M(x, y) =

M∑
n=0

[
�1D
n (x)− �1D

n−1(x)
] [
�1D
M−n(y)− �1D

M−n−1(y)
]
. (B.4)

We also know, using equation (23) of [12], that (using our present notation for indices)

�2
M(x, y) = �2D

M (r)− �2D
M−1(r) = Q

(M+1)
0 (y)

e−y/2

π
(B.5)
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where the Q(M+1)
i (y) are defined in terms of the Laguerre polynomials. But �2D

M (r) can be
completely expressed in terms ofQ(M+1)

0 (y) and its derivatives (equations (4) and (7) of [12]).
Therefore �2D

M (r) is completely determined by �2
M(r) and its derivatives.
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